[1] E. Schr¨odinger, Naturwissenschaften, 23:807-812;823- 828;844-849, 1935.
[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)
[3] J.S. Bell, Physics 1, 195 (1964)
[4] D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ, 1951
[5] The most common auxiliary assumptions involved in the experimental tests of Bell's inequality are: 1) the fairsampling assumption, namely, the hypothesis that undetected events coming from low detection efficiencies would follow the same statistics of the measured data set, 2) post-selection, which consists in disregarding part of the state of a physical system by not measuring it (i.e., imposing a selective, or state-dependent, loss mechanism) 3) the locality-loophole, which arises whenever a physical signal could be exchanged between the two systems under investigation during the measurement process.
[6] C.H. Bennett, et al., Nature 404, 247 (2000)
[7] S.M. Tan, D.F. Walls, and M.J. Collett, Phys. Rev. Lett. 66, 252 (1991)
[8] E. Santos, Phys. Rev. Lett. 68, 894 (1992); L. Hardy, ibid. 75, 2065 (1995) and refs. therein; D.M. Greenberger, et al. ibid. 75, 2064 (1995); A. Peres, ibid. 74, 4571 (1995); D. Horne, et al., Phys. Lett. A 209, 1 (1995); K. Jacobs, et al., Phys. Rev. A 54, R3738 (1996)
[9] L. Hardy, Phys. Rev. Lett. 73, 2279 (1994)
[10] K. Banaszek, and K. Wodkiewicz, Phys. Rev. A 58, 4345 (1998); Phys. Rev. Lett. 82, 2009 (1999)
[11] S.A. Babichev, et al., Phys. Rev. Lett. 92, 193601 (2004)
[12] B. Hessmo, et. al. Phys. Rev. Lett. 92, 180401 (2004)
[13] S. J. Van Enk, Phys. Rev. A 72, 064306 (2005)
[14] A. Zavatta, et al., Phys. Rev. Lett. 96, 020502 (2006)
[15] M. Pawlowski and M. Czachor, quant-ph/0507151, and Phys. Rev. A 73, 042111 (2006)
[16] U. Leonhardt, Measuring the Quantum State of Light, Cambridge University Press, Cambridge, 1997
[17] M.G.A. Paris and J. Rehacek (Eds.), Quantum State Estimation (Springer, Berlin, 2004).
[18] S. Giacomini et al., Phys. Rev. A 66, 030302 (2002)
[19] H. de Riedmatten et al., Phys. Rev. Lett. 92, 047904 (2004)
[20] E. Knill, et al., Nature (London) 409, 46 (2001)
[21] T. B. Pittman, et al., Phys. Rev. A 71, 032307 (2005)
[22] J. Brendel, et al., Phys. Rev. Lett. 82, 2594 (1999); H. de Riedmatten, et al., Phys. Rev. A 69, 050304 (2004)
[23] C. Simon, et al., Phys. Rev. Lett. 94, 030502 (2005)
[24] I. Marcikic, et al., Nature (London) 421, 509 (2003)
[25] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002)
[26] A. Peres, Phys. Rev. Lett. 77, 1413 (1996)
[27] B. Yurke, et al., Phys. Rev. Lett. 79, 4941 (1997); J. Wenger, et al., Phys. Rev. A 67, 012105 (2003); S. Daffer, et al., ibid 72, 034101 (2005)
[28] A. Zavatta, et al., Phys. Rev. A 70, 053821 (2004)
[29] A. Zavatta, et al., Science 306, 660 (2004), and Phys. Rev. A 72, 023820 (2005)
[30] T.E. Keller, and M.H. Rubin, Phys. Rev. A 56, 1534 (1997); Y.-H. Kim, et al., Phys. Rev. A 62, 043820 (2000)
[31] A.I. Lvovsky, et al., Phys. Rev. Lett. 87, 050402 (2001)
[32] By defining the purity parameter as P = T r(ρˆs2), we get, in the spectral and the spatial domains, respectively: Pspectral = 1/p1 + Δωi2/Δωp2 = .98, and Pspatial = 2 2 1/(1 + Δκi /Δκp) = .86, where Gaussian profiles with spectral and spatial widths Δωj2 and Δκj2 are assumed both for the pump power spectrum (j = p) and for the filter transmission function in the idler channel (j = i). The contribution of purity to the single-photon preparation efficiency is: ηpurity = pPspectralPspatial = .92.
[33] G. M. D'Ariano, et al., Phys. Rev. A 50, 4298 (1994).
[34] G. M. D'Ariano in Quantum optics and Spectroscopy of Solids, edited by T. Hakioglu and A. Shumovsky (Kluwer Academic, Dordrecht, 1997), pp. 175-202.
[35] K. Banaszek, et al., Phys. Rev. A 61, 010304(R) (1999)
[36] T. Kiss, et al., Phys. Rev. A 52, 2433 (1995)
[37] After the vacuum-cleaning procedure, we find EN (ρˆ) = 0.99 ± 0.01, which is very close to the unitary value expected for the pure state of Eq. (2). The amount of entanglement required for observing a violation of BanaszekBell's inequality is EN > 0.942; as far as the identification of entanglement is concerned, the more restrictive bounds imposed by Bell's inequality with respect to Peres criterion appear here explicitly.
[38] In this respect, it is worth reminding that also the first by A. Aspect et al. (PRL 49, 1804 (1982)).