2019
Journal article  Open Access

Electrical Control of Lifetime-Limited Quantum Emitters Using 2D Materials

Schadler Kevin G., Ciancico Carlotta, Pazzagli Sofia, Lombardi Pietro, Bachtold Adrian, Toninelli Costanza, Reserbat-Plantey Antoine, Koppens Frank H. L.

Condensed Matter Physics  Bioengineering  single photon source  Single molecules  2D materials  lifetime-limited line width  Stark effect  FOS: Physical sciences  General Materials Science  electrical control  General Chemistry  Condensed Matter - Mesoscale and Nanoscale Physics  Mesoscale and Nanoscale Physics (cond-mat.mes-hall)  Optics (physics.optics)  Mechanical Engineering  Physics - Optics 

Solid-state quantum emitters are a mainstay of quantum nanophotonics as integrated single-photon sources (SPS) and optical nanoprobes. Integrating such emitters with active nanophotonic elements is desirable in order to attain efficient control of their optical properties, but it typically degrades the photostability of the emitter itself. Here, we demonstrate a tunable hybrid device that integrates state of the art lifetime-limited single emitters (line width similar to 40 MHz) and 2D materials at subwavelength separation without degradation of the emission properties. Our device's nanoscale dimensions enable ultrabroadband tuning (tuning range >400 GHz) and fast modulation (frequency similar to 100 MHz) of the emission energy, which renders it an integrated, ultracompact tunable SPS. Conversely, this offers a novel approach to optical sensing of 2D material properties using a single emitter as a nanoprobe.

Source: Nano letters (Print) 19 (2019): 3789–3795. doi:10.1021/acs.nanolett.9b00916

Publisher: American Chemical Society,, Washington, DC , Stati Uniti d'America


Nature 480, 193-199 (2011).
Iwasaki, T. et al. Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins. ACS Nano 11, 1238-1245 (2017).
Thompson, J. D. et al. Coupling a Single Trapped Atom to a Nanoscale Optical Cavity. Science (80). 340, 1202-1205 (2013).
Phys. Lett. 107, (2015).
Siyushev, P., Stein, G., Wrachtrup, J. & Gerhardt, I. Molecular photons interfaced with alkali atoms. Nature 509, 66-70 (2014).
Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 26-29 (2010).
O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687-695 (2010).
Commun. 158, 250-262 (1998).
Koppens, F. H. L., Chang, D. E. & de Abajo, F. J. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 11, 3370-3377 (2011).
Karanikolas, V. D., Marocico, C. A., Eastham, P. R. & Bradley, A. L. Near-field relaxation of a quantum emitter to two-dimensional semiconductors: Surface dissipation and exciton polaritons. Phys. Rev. B 94, 195418 (2016).
Tamarat, P. et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97, 083002 (2006).
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot singlephoton sources. Nat. Nanotechnol. 12, 1026-1039 (2017).
Orrit, M., Bernard, J., Zumbusch, A. & Personov, R. I. I. Stark effect on single molecules in a polymer matrix. Chem. Phys. Lett. 196, 595-600 (1992).
Sundaram, R. S. et al. Electroluminescence in Single Layer MoS 2. Nano Lett. 13, 1416-1421 (2013).
Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64-67 (2011).
Chakraborty, C. et al. Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure. Nano Lett. 17, 2253-2258 (2017).
Roch, J. G. et al. Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Gaudreau, L. et al. Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene.
Nano Lett. 13, 2030-2035 (2013).
Nano Lett. 13, 3152-3156 (2013).
Raja, A. et al. Energy Transfer from Quantum Dots to Graphene and MoS 2 : The Role of Absorption and Screening in Two-Dimensional Materials. Nano Lett. 16, 2328-2333 (2016).
Phys. Rev. Lett. 112, 223601 (2014).
Chang, C.-H., Rivera, N., Joannopoulos, J. D., Soljačić, M. & Kaminer, I. Constructing “Designer Atoms” via Resonant Graphene-Induced Lamb Shifts. ACS Photonics 4, 3098-3105 (2017).
Lee, J. et al. Switching Individual Quantum Dot Emission through Electrically Controlling Resonant Energy Transfer to Graphene. Nano Lett. 14, 7115-7119 (2014).
Prasai, D. et al. Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimensional Semiconductors. Nano Lett. 15, 4374-4380 (2015).
Tielrooij, K. J. et al. Electrical control of optical emitter relaxation pathways enabled by graphene. Nat. Phys. 11, 281-287 (2015).
Reserbat-Plantey, A. et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 7, 10218 (2016).
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182-194 (2016).
Schmidgall, E. R. et al. Frequency Control of Single Quantum Emitters in Integrated Photonic Circuits. Nano Lett. 18, 1175-1179 (2018).
Maniyara, R. A., Mkhitaryan, V. K., Chen, T. L., Ghosh, D. S. & Pruneri, V. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1).
Nat. Commun. 7, 13771 (2016).
Amos, R. M. & Barnes, W. L. Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys. Rev. B 55, 7249-7254 (1997).
Trebbia, J.-B., Tamarat, P. & Lounis, B. Indistinguishable near-infrared single photons from an individual organic molecule. Phys. Rev. A 82, 063803 (2010).
Toninelli, C. et al. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express 18, 6577 (2010).
Nicolet, A. A. L. et al. Single Dibenzoterrylene Molecules in an Anthracene Crystal: Main Insertion Sites. ChemPhysChem 8, 1929-1936 (2007).
Pazzagli, S. et al. Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission. ACS Nano 12, 4295-4303 (2018).
Liu, J. et al. Single Self-Assembled InAs/GaAs Quantum Dots in Photonic Nanostructures: The Role of Nanofabrication. Phys. Rev. Appl. 9, 64019 (2018).

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:422005,
	title = {Electrical Control of Lifetime-Limited Quantum Emitters Using 2D Materials},
	author = {Schadler Kevin G. and Ciancico Carlotta and Pazzagli Sofia and Lombardi Pietro and Bachtold Adrian and Toninelli Costanza and Reserbat-Plantey Antoine and Koppens Frank H.  L.},
	publisher = {American Chemical Society,, Washington, DC , Stati Uniti d'America},
	doi = {10.1021/acs.nanolett.9b00916 and 10.48550/arxiv.1905.06027},
	journal = {Nano letters (Print)},
	volume = {19},
	pages = {3789–3795},
	year = {2019}
}

QuantERA
QuantERA ERA-NET Cofund in Quantum Technologies

2D-SIPC
Two-dimensional quantum materials and devices for scalable integrated photonic circuits


OpenAIRE