[1] Retrieved from https://research.ibm.com/blog/127- qubit-quantum-processor-eagle.
[2] H. J. Kimble, The Quantum Internet, Nature, vol. 453, pp. 1023-1030 (2008).
[3] L. Maccone and C. Ren, Quantum Radar, Phys. Rev. Lett. 124, 200503 (2020).
[4] M. Lanzagorta and J. Uhlmann, Quantum Radar (Morgan and Claypool, San Rafael, CA, 2012), p. 66.
[5] C. Eichler, D. Bozyigit, C. Lang, M. Baur, L. Ste en, J. M. Fink, S. Filipp, and A. Wallra , Observation of TwoMode Squeezing in the Microwave Frequency Domain, Phys. Rev. Lett. 107, 113601 (2011).
[6] E. Flurin, The Josephson mixer { A swiss army knife for microwave quantum optics, Ph.D. thesis, ecole normale superieure, Paris (2014).
[7] K. G. Fedorov, S. Pogorzalek, U. Las Heras, M. Sanz, P. Yard, P. Eder, M. Fischer, J. Goetz, E. Xie, K. Inomata, Y. Nakamura, R. Di Candia, E. Solano, A. Marx, F. Deppe, and R. Gross, Finite-time quantum entanglement in propagating squeezed microwaves, Sci. Rep. 8, 6416 (2018).
[8] E. Flurin, N. Roch, F. Mallet, M. H. Devoret, B. Huard, Generating Entangled Microwave Radiation Over Two Transmission Lines, Phys. Rev. Lett. 109, 183901 (2012).
[9] M. Esposito, A. Ranadive, L. Planat, et al., Observation of two-mode squeezing in a traveling wave parametric ampli er, https://arxiv.org/abs/2111.03696.
[10] A. Peugeot, G. Menard, S. Dambach, M. Westig, B. Kubala, Y. Mukharsky, C. Altimiras, P. Joyez, D. Vion, P. Roche, D. Esteve, P. Milman, J. Leppakangas, G. Johansson, M. Hofheinz, J. Ankerhold, and F. Portier, Generating Two Continuous Entangled Microwave Beams Using a dc-Biased Josephson Junction, Phys. Rev. X, 11, 031008 (2021).
[11] S.-K. Ma, J.-K. Xie, and F.-L. Li, Generation of superposition coherent states of microwave elds via dissipation of a superconducting qubit with broken inversion symmetry, Phys. Rev. A 99, 022302 (2019).
[12] P. Kurpiers, M. Pechal, B. Royer, P. Magnard, T. Walter, J. Heinsoo, Y. Salathe, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallra , Quantum Communication with Time-Bin Encoded Microwave Photons, Phys. Rev. Applied 12, 044067 (2019).
[13] A. Wallra , Deterministic Quantum Teleportation with Feed-Forward in a Solid State System. In APS March Meeting Abstracts (Vol. 2014, pp. G32-002).
[14] R. Di Candia, K. G. Fedorov, L. Zhong, S. Felicetti, E. P. Menzel, M. Sanz, F. Deppe, A. Marx, R. Gross, and E. Solano, Quantum teleportation of propagating quantum microwaves, EPJ Quantum Technology 2, 25 (2015).
[15] K. G. Fedorov, M. Renger, S. Pogorzalek, R. Di Candia, Q. Chen, Y. Nojiri, K. Inomata, Y. Nakamura, M. Partanen, A. Marx, R. Gross, and F. Deppe, Experimental quantum teleportation of propagating microwaves, Science Advances 7, eabk0891 (2021).
[16] M. Stammeier, S. Garcia, A. Wallra , Applying electric and magnetic eld bias in a 3D superconducting waveguide cavity with high quality factor, Quantum Sci. Technol. 3 045007 (2018).
[17] T. Gonzalez-Raya and M. Sanz, Coplanar Antenna Design for Microwave Entangled Signals Propagating in Open Air, arXiv preprint arXiv:2009.03021 (2020).
[18] T. Gonzalez-Raya, M. Casariego, F. Fesquet, M. Renger, V. Salari, M. Mottonen, Y. Omar, F. Deppe, K. G. Fedorov, M. Sanz, Open-Air Microwave Entanglement Distribution for Quantum Teleportation, arXiv preprint arXiv:2203.07295 (2022).
[19] J. H. Shapiro, S. Guha, and B. I. Erkmen, Ultimate channel capacity of free-space optical communications, J. Opt. Netw. 4, 501{515 (2005).
[20] S. Pirandola, Satellite quantum communications: Fundamental bounds and practical security, Phys. Rev. R 3, 023130 (2021).
[21] S. Pirandola, Limits and security of free-space quantum communications, Phys. Rev. R 3, 013279 (2021).
[22] Kaltenbaek, R., Acin, A., Bacsardi, L. et al., Quantum technologies in space. Exp Astron 51, 1677{1694 (2021).
[23] A. K. Azad, A. V. E mov, S. Ghosh, et al., Ultra-thin metasurface microwave at lens for broadband applications, Appl. Phys. Lett. 110, 224101 (2017).
[24] H. T. Friis, Proceedings of the I.R.E. and Waves and Electrons, 34(5), 254{256 (1946).
[25] D. C. Hogg, IEEE Antennas and Propagation Magazine, 35(4), 33-35, (1993).
[26] J. A. Shaw, Am. J. Phys. 81, 33 (2013).
[27] H. Kaushal, V. Jain, and S. Kar, Free Space Optical Communication, Vol. 7, Springer, New Delhi, 2018.
[28] F. Fesquet, F. Kronowetter, M. Renger, Q. Chen, K. Honasoge, O. Gargiulo, Y. Nojiri et al., Perspectives of microwave quantum key distribution in open-air, arXiv preprint arXiv:2203.05530 (2022).
[29] M. Mariantoni, E. P. Menzel, F. Deppe, M. A. Araque Caballero, A. Baust, T. Niemczyk, E. Ho mann, E. Solano, A. Marx, and R. Gross, Planck Spectroscopy and Quantum Noise of Microwave Beam Splitters, Phys. Rev. Lett. 105, 133601 (2010).
[30] E. P. Menzel, R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Ho - mann, D. Ballester, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, A. Marx, and R. Gross, Path Entanglement of Continuous-Variable Quantum Microwaves, Phys. Rev. Lett. 109, 250502 (2012).
[31] P. Eder, T. Ramos, J. Goetz, M. Fischer, S. Pogorzalek, J. Puertas Mart nez, E. P. Menzel, F. Loacker, E. Xie, J. J. Garcia-Ripoll, K. G. Fedorov, A. Marx, F. Deppe and R. Gross, Quantum probe of an on-chip broadband interferometer for quantum microwave photonics, Supercond. Sci. Technol. 31 115002 (2018).
[32] E. P. Menzel, F. Deppe, M. Mariantoni, M. A. Araque Caballero, A. Baust, T. Niemczyk, E. Ho mann, A. Marx, E. Solano, and R. Gross, Dual-Path State Reconstruction Scheme for Propagating Quantum Microwaves and Detector Noise Tomography, Phys. Rev. Lett. 105, 100401 (2010).
[33] R. Di Candia, E. P. Menzel, L. Zhong, F. Deppe, A. Marx, R. Gross and E. Solano, Dual-path methods for propagating quantum microwaves, New J. Phys. 16, 015001 (2014).
[34] E. Ho mann, F. Deppe, T. Niemczyk, T. Wirth, E. P. Menzel, G. Wild, H. Huebl, M. Mariantoni, T. Wei l, A. Lukashenko, A. P. Zhuravel, A. V. Ustinov, A. Marx, and R. Gross,A superconducting 180 hybrid ring coupler for circuit quantum electrodynamics, Appl. Phys. Lett. 97, 222508 (2010).
[35] H. S. Ku, F. Mallet, L. Vale, K. D. Irwin, S. Russek, G. Hilton, and K. W. Lehnert, Design and Testing of Superconducting Microwave Passive Components for Quantum Information Processing, Appl. Supercond. 21, 452{455 (2011).
[36] K. G. Fedorov, L. Zhong, S. Pogorzalek, P. Eder, M. Fischer, J. Goetz, E. Xie, F. Wulschner, K. Inomata, T. Yamamoto, Y. Nakamura, R. Di Candia, U. Las Heras, M. Sanz, E. Solano, E. P. Menzel, F. Deppe, A. Marx, and R. Gross, Displacement of Propagating Squeezed Microwave States, Phys. Rev. Lett. 117, 020502 (2016).
[37] S. Pogorzalek, K. G. Fedorov, M. Xu, A. ParraRodriguez, M. Sanz, M. Fischer, E. Xie, K. Inomata, Y. Nakamura, E. Solano, A. Marx, F. Deppe and R. Gross, Secure quantum remote state preparation of squeezed microwave states, Nature Communications 10, 2604 (2019).
[38] , L Zhong, E. P. Menzel, R. Di Candia, P. Eder, M. Ihmig, A. Baust, M. Haeberlein, E. Ho mann, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, F. Deppe, A. Marx, and R Gross, Squeezing with a uxdriven Josephson parametric ampli er, New J. Phys. 15 125013 (2013).
[39] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, Phasepreserving ampli cation near the quantum limit with a Josephson ring modulator, Nature 465, 64-{68 (2010).
[40] M. Perelshtein, K. Petrovnin, V. Vesterinen, S. H. Raja, I. Lilja, M. Will, A. Savin, S. Simbierowicz, R. Jabdaraghi, J. Lehtinen, L. Gronberg, J. Hassel, M. Prunnila, J. Govenius, S. Paraoanu, and P. Hakonen, Broadband continuous variable entanglement generation using Kerr-free Josephson metamaterial, arXiv:2111.06145 (2021).
[41] C. Macklin, K. O'Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, A near quantum-limited Josephson traveling-wave parametric ampli er, Science 350, 307 (2015).
[42] T. C. White, J. Y. Mutus, I.-C. Hoi, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Je rey, J. Kelly, A. Megrant, C. Neill, P. J. J. O'Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, S. Chaudhuri, J. Gao, and J. M. Martinis, Traveling wave parametric ampli er with Josephson junctions using minimal resonator phase matching, Applied Physics Letters 106, 242601 (2015).
[43] M. Renger, S. Pogorzalek, Q. Chen, Y. Nojiri, K. Inomata, Y. Nakamura, M. Partanen, A. Marx, R. Gross, F. Deppe, and K. G. Fedorov, Beyond the standard quantum limit for parametric ampli cation of broadband signals, npj Quantum Information 7, 160 (2021).
[44] B. J. Chapman, E. I. Rosenthal, J. Kerckho , B. A. Moores, L. R. Vale, J. A. B. Mates, G. C. Hilton, K. Lalumiere, A. Blais, and K. W. Lehnert, Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits, Phys. Rev. X 7, 041043 (2017).
[45] L. Ranzani and J. Aumentado, Circulators at the Quantum Limit: Recent Realizations of Quantum-Limited Superconducting Circulators and Related Approaches, IEEE Microwave Magazine 20, 112{122 (2019).
[46] G. N. Milford, C. C. Harb, and E. H. Huntington, Shot noise limited, microwave bandwidth photodetector design, Rev. Sci. Instrum., vol. 77, no. 11, p. 114701 (2006).
[47] G. Romero, J. J. Garc a-Ripoll, and E. Solano, Photodetection of propagating quantum microwaves in circuit QED, Phys. Scr., vol. T137, p. 014004 (2009).
[48] Y.-F. Chen et al., Microwave Photon Counter Based on Josephson Junctions, Phys. Rev. Lett., 107, p. 217401 (2011).
[49] B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garc a-Ripoll, Perfect Microwave Photodetection in Circuit QED, Phys. Rev. A, vol. 84, p. 063834 (2011).
[50] S. R. Sathyamoorthy, T. M. Stace, and G. Johansson, Detecting itinerant single microwave photons, Comptes Rendus Physique, vol. 17, no. 7, p. 756 (2016).
[51] J. Govenius, R. E. Lake, K. Y. Tan, and M. Mottonen, Detection of Zeptojoule Microwave Pulses Using Electrothermal Feedback in Proximity-Induced Josephson Junctions, Phys. Rev. Lett. 117, 030802 (2016).
[52] Menzel, E. P. et al., Path entanglement of continuousvariable quantum microwaves, Phys. Rev. Lett. 109, 250502 (2012).
[53] C. Eichler, D. Bozyigit, and A. Wallra , Characterizing Quantum Microwave Radiation and its Entanglement with Superconducting Qubits using Linear Detectors, Phys. Rev. A 86, 032106 (2012).
[54] C. Eichler, D. Bozyigit, C. Lang, L. Ste en, J. Fink, and A. Wallra , Experimental State Tomography of Itinerant Single Microwave Photons, Phys. Rev. Lett. 106, 220503 (2011).
[55] J. Meinel et al., Heterodyne sensing of microwaves with a quantum sensor, Nature Communications 12, 2737 (2021).
[56] J.-C. Besse, S. Gasparinetti, M. C. Collodo, T. Walter, A. Remm, J. Krause, C. Eichler, and A. Wallra , Parity Detection of Propagating Microwave Fields, Phys. Rev. X 10, 011046 (2020).
[57] A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, E. Zalys-Geller, S. O. Mundhada, W. Pfa , L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Robust concurrent remote entanglement between two superconducting qubits, Phys. Rev. X 6, 031036 (2016).
[58] G. Xiang, T. Ralph, A. Lund, et al. Heralded noiseless linear ampli cation and distillation of entanglement. Nature Photon 4, 316{319 (2010).
[59] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deleglise, U. Busk Ho , M. Brune, J. M. Raimond, and S. Haroche, Quantum jumps of light recording the birth and death of a photon in a cavity, Nature 446, 297 (2007).
[60] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J. M. Raimond, and S. Haroche, Progressive eld-state collapse and quantum non-demolition photon counting, Nature 448, 889 (2007).
[61] B. R. Johnson, M. D. Reed, A. A. Houck, D. I. Schuster, L. S. Bishop, E. Ginossar, J. M. Gambetta, L. Dicarlo, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Quantum non-demolition detection of single microwave photons in a circuit, Nat. Phys. 6, 663 (2010).
[62] P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp, and A. Wallra , Cavity quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev. Lett. 104, 100504 (2010).
[63] L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumo , L. Frunzio, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Tracking photon jumps with repeated quantum non-demolition parity measurements, Nature 511, 444 (2014).
[64] G. Romero, J. J. Garc a-Ripoll, and E. Solano, Microwave photon detector in circuit QED, Phys. Rev. Lett. 102, 173602 (2009).
[65] F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, Quantum nondemolition photon detection in circuit QED and the quantum Zeno e ect, Phys. Rev. A 79, 052115 (2009).
[66] K. Koshino, K. Inomata, T. Yamamoto, and Y. Nakamura, Implementation of an impedance-matched system by dressed-state engineering, Phys. Rev. Lett. 111, 153601 (2013).
[67] S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, Quantum nondemolition detection of a propagating microwave photon, Phys. Rev. Lett. 112, 093601 (2014).
[68] B. Fan, G. Johansson, J. Combes, G. J. Milburn, and T. M. Stace, Nonabsorbing high-e ciency counter for itinerant microwave photons, Phys. Rev. B 90, 035132 (2014).
[69] O. Kyriienko and A. S. S rensen, Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit, Phys. Rev. Lett. 117, 140503 (2016).
[70] S. R. Sathyamoorthy, T. M. Stace, and G. Johansson, Detecting itinerant single microwave photons, Comptes Rendus Phys. 17, 756 (2016).
[71] X. Gu, A. Frisk, A. Miranowicz, Y.-x. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718-719, 1 (2017).
[72] C. H. Wong and M. G. Vavilov, Quantum e ciency of a single microwave photon detector based on a semiconductor double quantum dot, Phys. Rev. A 95, 012325 (2017).
[73] J. Leppakangas, M. Marthaler, D. Hazra, S. Jebari, R. Albert, F. Blanchet, G. Johansson, and M. Hofheinz, Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling, Phys. Rev. A 97, 013855 (2018).
[74] B. Royer, A. L. Grimsmo, A. Choquette-Poitevin, and A. Blais, Itinerant Microwave Photon Detector, Phys. Rev. Lett. 120, 203602 (2018).
[75] Y. F. Chen, D. Hover, S. Sendelbach, L. Maurer, S. T. Merkel, E. J. Pritchett, F. K. Wilhelm, and R. McDermott, Microwave photon counter based on Josephson junctions, Phys. Rev. Lett. 107, 217401 (2011).
[76] K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J. S. Tsai, T. Yamamoto, and Y. Nakamura, Single microwave-photon detector using an arti cial -type three-level system, Nat. Commun. 7, 12303 (2016).
[77] J.-C. Besse et al., Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons, Phys. Rev. X 8, 021003 (2018).
[78] S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, Quantum non-demolition detection of an itinerant microwave photon, Nat. Phys. 14, 546 (2017).
[79] R. Lescanne, S. Deleglise, E. Albertinale, U. Reglade, T. Capelle, E. Ivanov, T. Jacqmin, Z. Leghtas, and E. Flurin, Irreversible Qubit-Photon Coupling for the Detection of Itinerant Microwave Photons, Phys. Rev. X 10, 021038 (2019).
[80] A. M. Sokolov, and F. K. Wilhelm, Superconducting Detector That Counts Microwave Photons Up to Two, Phys. Rev. Appl. 14 064063 (2020).
[81] A. L. Grimsmo, B. Royer, J. M. Kreikebaum, Y. Ye, K. O'Brien, I. Siddiqi, and A. Blais, Quantum Metamaterial for Broadband Detection of Single Microwave Photons, Phys. Rev. Appl. 15, 034074 (2020).
[82] R. Dassonneville, R. Assouly, T. Peronnin, P. Rouchon, and B. Huard, Number-Resolved Photocounter for Propagating Microwave Mode, Phys. Rev. Appl. 14, 044022 (2020).
[83] E. Albertinale, L. Balembois, E. Billaud, et al. Detecting spins by their uorescence with a microwave photon counter. Nature 600, 434{438 (2021).
[84] K. Roope, et al., Bolometer operating at the threshold for circuit quantum electrodynamics, Nature 586, 47{51 (2020).
[85] K. Roope, J. Govenius, V. Vesterinen, R. E. Lake, A. M. Gunyho, K. Y. Tan, S. Simbierowicz et al., Nanobolometer with ultralow noise equivalent power, Communications Physics 2, no. 1, 1-8 (2019).
[86] J. Govenius, R. E. Lake, K. Y. Tan, V. Pietila, J. K. Julin, I. J. Maasilta, P. Virtanen, and M. Mottonen, Microwave nanobolometer based on proximity Josephson junctions, Physical Review B 90, no. 6 064505 (2014).
[87] Lake, R. E., J. Govenius, R. Kokkoniemi, K. Y. Tan, M. Partanen, P. Virtanen, and M. Mottonen, Microwave Admittance of Gold-Palladium Nanowires with Proximity-Induced Superconductivity, Advanced Electronic Materials, 3(6), 1600227 (2017).
[88] J. Govenius, R. E. Lake, K. Y. Tan, and M. Mottonen, Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions, Physical Review Letters 117, no. 3, 030802 (2016).
[89] J. -P. Girard, W. Liu, R. Kokkoniemi, E. Visakorpi, J. Govenius, and M. Mottonen. Cryogenic power sensor enabling broad-band and traceable measurements, arXiv:2108.05101 (2021).
[90] J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P. Nilsson, J. P. Starski, N. Wadefalk, H. Zirath, and J. Grahn, \Ultra-low-power cryogenic InP HEMT with minimum noise temperature of 1K at 6GHz", IEEE Electron Device Lett, vol. 33, no. 5, pp. 664-666 (2012).
[91] E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson and J. Grahn, A 300- W Cryogenic HEMT LNA for quantum computing, IEEE/MTT-S International Microwave Symposium (2020).
[92] S. Montazeri and J. C. Bardin, A sub-milliwatt 4-8 GHz SiGe cryogenic low noise ampli er, in Proc. IEEE MTTS International Microwave Symposium (IMS), pp. 160- 163 (2017).
[93] N.E. Frattini, U. Vool, S. Shankar, A. Narla,K. M. Sliwa, & M. H. Devoret, 3-wave mixing Josephson dipole element. Applied Physics Letters, 110(22), 222603 (2017).
[94] A. Ranadive, M. Esposito, L. Planat, E. Bonet, C. Naud, O. Buisson & N. Roch, A reversed Kerr traveling wave parametric ampli er. arXiv preprint arXiv:2101.05815 (2021).
[95] A. Miano & O. A. Mukhanov, Symmetric traveling wave parametric ampli er. IEEE Transactions on Applied Superconductivity, 29(5), 1-6 (2019).
[96] J. Y. Qiu, A. Grimsmo, K. Peng , B. Kannan, et al., Broadband Squeezed Microwaves and Ampli cation with a Josephson Traveling-Wave Parametric Ampli er. arXiv preprint arXiv:2201.11261 (2022).
[97] M. Malnou, M. R. Vissers, Wheeler, et al., Three-wave mixing kinetic inductance traveling-wave ampli er with near-quantum-limited noise performance. PRX Quantum, 2(1), 010302 (2021).
[98] M. Esposito, A. Ranadive, L. Planat and N. Roch, Perspective on traveling wave microwave parametric ampliers, Applied Physics Letters, 119(12), 120501 (2021).
[99] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M. Lucas et al., DeviceIndependent Quantum Key Distribution, arXiv preprint arXiv:2109.14600 (2021).
[100] L. J. Stephenson, , D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance, K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance, High-rate, high- delity entanglement of qubits across an elementary quantum network, Physical Review Letters 124, 11 (2020).
[101] Zhang, W., van Leent, T., Redeker, K., Gartho , R., Schwonnek, R., Fertig, F., Eppelt, S., Scarani, V., Lim, C.C.W. and Weinfurter, H., 2021. Experimental deviceindependent quantum key distribution between distant users. arXiv preprint arXiv:2110.00575.
[102] Liu, W.Z., Zhang, Y.Z., Zhen, Y.Z., Li, M.H., Liu, Y., Fan, J., Xu, F., Zhang, Q. and Pan, J.W., 2021. High-speed device-independent quantum key distribution against collective attacks. arXiv preprint arXiv:2110.01480.
[103] B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg et al, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, no. 7575, 682-686 (2015).
[104] L. Shalm K., E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits et al., Strong loophole-free test of local realism, Physical Review Letters 115, no. 25, 250402 (2015).
[105] M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner et al., Signi cant-loophole-free test of Bell's theorem with entangled photons, Physical Review Letters 115, no. 25, 250401 (2015).
[106] R. Arnon-Friedman, et al., Practical device-independent quantum cryptography via entropy accumulation, Nature Communications 9.1, 1-11 (2018)
[107] C.H. Bennett, and G. Brassard, Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020).
[108] A. K. Ekert, Quantum cryptography based on Bell's theorem, Physical Review Letters 67, no. 6, 661 (1991).
[109] C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Physical Review Letters 68.21, 3121 (1992).
[110] D. Stucki, N. Brunner, N. Gisin, V. Scarani, & H. Zbinden, Fast and simple one-way quantum key distribution. Applied Physics Letters, 87(19), 194108 (2005).
[111] H. K. Lo, X. Ma, & K. K. Chen, Decoy state quantum key distribution. Physical Review Letters, 94(23), 230504 (2005).
[112] Grunenfelder, F., Boaron, A., Rusca, D., Martin, A. and Zbinden, H., 2018. Simple and high-speed polarizationbased QKD. Applied Physics Letters, 112(5), p.051108.
[113] Ren, Ji-Gang, Ping Xu, Hai-Lin Yong, Liang Zhang, Sheng-Kai Liao, Juan Yin, Wei-Yue Liu et al, Groundto-satellite quantum teleportation, Nature 549, no. 7670 (2017): 70-73.
[114] Liao, Sheng-Kai, Wen-Qi Cai, Wei-Yue Liu, Liang Zhang, Yang Li, Ji-Gang Ren, Juan Yin et al, Satelliteto-ground quantum key distribution, Nature 549, no. 7670 (2017): 43-47.
[115] Yin, J., Li, Y. H., Liao, S. K., Yang, M., Cao, Y., Zhang, L., ... & Pan, J. W. (2020). Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582 (7813), 501-505.
[116] Kurpiers, Philipp, Paul Magnard, Theo Walter, Baptiste Royer, Marek Pechal, Johannes Heinsoo, Yves Salathe et al, Deterministic quantum state transfer and remote entanglement using microwave photons, Nature 558, no. 7709 (2018): 264-267.
[117] Magnard, Paul, et al, Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems, Physical Review Letters 125.26 (2020): 260502.
[118] Diamanti, Eleni, Hoi-Kwong Lo, Bing Qi, and Zhiliang Yuan, Practical challenges in quantum key distribution, npj Quantum Information 2, no. 1 (2016): 1-12.
[119] M. Sanz, K. G. Fedorov, F. Deppe, and E. Solano, Challenges in Open-air Microwave Quantum Communication and Sensing, IEEE Conference on Antenna Measurements & Applications (CAMA), 1-4, (2018).
[120] F. Laudenbach et al., Continuous-Variable Quantum Key Distribution with Gaussian Modulation{The Theory of Practical Implementations., Adv. Quantum Technol., 1(1), 1800011 (2018).
[121] Cerf, Nicolas J., Marc Levy, and Gilles Van Assche, Quantum distribution of Gaussian keys using squeezed states, Physical Review A 63, no. 5 (2001): 052311.
[122] D. Awschalom et al. \Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies", PRX Quantum 2, 017002, https://link.aps.org/doi/10.1103/PRXQuantum.2.017002.
[123] M. Mirhosseini, A. Sipahigil, M. Kalaee, O. Painter, \Superconducting qubit to optical photon transduction", Nature 588, 599{603, https://www.nature.com/articles/s41586-020-3038- 6, (2020).
[124] F. Deppe, M. Renger, M. Partanen, S. Pogorzalek, Q.- M. Chen, Y. Nojiri, A. Marx, K. G. Fedorov and R. Gross, Towards a Salable Millikelvin Cryolink Between Two Dilution Refrigerators", Annual Report 2020, pp. 49 - 50, https://www.wmi.badw.de/ leadmin/WMI/ Publications/Annual Reports/2020.pdf (2020).
[125] G. Batey and M. Buehler and M. Cuthbert and T. Foster and A.J. Matthews and G. Teleberg and A. Twin, Integration of superconducting magnets with cryogenfree dilution refrigerator systems, Cryogenics 49 (12) (2009) 727-734.
[126] M. Renger et al. In preparation.
[127] Krinner, Sebastian, Simon Storz, Philipp Kurpiers, Paul Magnard, Johannes Heinsoo, Raphael Keller, Janis Luetolf, Christopher Eichler, and Andreas Wallra , Engineering cryogenic setups for 100-qubit scale superconducting circuit systems, EPJ Quantum Technology 6, no. 1 (2019): 2.
[128] Magnard, Paul, Philipp Kurpiers, Janis Lutolf, Fabian Marxer, Simon Storz, Josua Schar, and Andreas Wallra , Experimental study of an elementary cryogenic microwave quantum network, Bulletin of the American Physical Society 65 (2020).
[129] K. P. Seshadreesan, H. Krovi, and S. Guha, Continuousvariable quantum repeater based on quantum scissors and mode multiplexing, Phys. Rev. Research 2, 013310 (2020).
[130] H. Wu, R. E. George, J? H. Wesenberg, K. M lmer, D. I. Schuster, R. J. Schoelkopf, K. M. Itoh, A. Ardavan, J. J. L. Morton, and G. A. D. Briggs, Storage of Multiple Coherent Microwave Excitations in an Electron Spin Ensemble, Phys. Rev. Lett. 105, 140503 (2010).
[131] Y. Kubo, I. Diniz, A. Dewes, V. Jacques, A. Dreau, J.-F. Roch, A. Au eves, D. Vion, D. Esteve, and P. Bertet, Storage and retrieval of a microwave eld in a spin ensemble, Phys. Rev. A 85, 012333 (2012).
[132] S. Saito, X. Zhu, R. Amsuss, Y. Matsuzaki, K. Kakuyanagi, T. Shimo-Oka, N. Mizuochi, K. Nemoto, W. J. Munro, and K. Semba, Towards Realizing a Quantum Memory for a Superconducting Qubit: Storage and Retrieval of quantum states, Phys. Rev. Lett. 111, 107008 (2013).
[133] Y. Yin, Y. Chen, D. Sank, P. J. J. O'Malley, T. C. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Catch and Release of Microwave Photon States, Phys. Rev. Lett. 110, 107001 (2013).
[134] J. Wenner, Yi Yin, Yu Chen, R. Barends, B. Chiaro, E. Je rey, J. Kelly, A. Megrant, J. Y. Mutus, C. Neill, P. J. J. O'Malley, P. Roushan, D. Sank, A. Vainsencher, T. C. White, Alexander N. Korotkov, A. N. Cleland, and John M. Martinis, Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption E ciency, Phys. Rev. Lett 112, 210501 (2014).
[135] Z. Bao, Z. Wang, Y. Wu, Y. Li, C. Ma, Y. Song, H. Zhang, L. Duan, On-Demand Storage and Retrieval of Microwave Photons Using a Superconducting Multiresonator Quantum Memory, Phys. Rev. Lett. 127, 010503 (2021).
[136] Palomaki, T., Harlow, J., Teufel, J. et al. Coherent state transfer between itinerant microwave elds and a mechanical oscillator. Nature 495, 210{214 (2013).
[137] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Entangling Mechanical Motion with Microwave Fields, Science 342, 6159 (2013).
[138] J. Dias, M. S. Winnel, N. Hosseinidehaj, T. C. Ralph, Quantum repeater for continuous variable entanglement distribution, Phys. Rev. A 102, 052425 (2020).
[139] Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777{781 (2012).
[140] S. Lloyd, Enhanced Sensitivity of Photodetection via Quantum Illumination, Science 321, 5895 (2008).
[141] S. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, Quantum Illumination with Gaussian States, Phys. Rev. Lett. 101, 253601 (2008).
[142] S. Guha and B. I. Erkmen, Gaussian-state quantumillumination receivers for target detection, Phys. Rev. A 80, 052310 (2009).
[143] G. De Palma, J. Borregaard, The minimum error probability of quantum illumination, Phys. Rev. A 98, 012101 (2018).
[144] J. H. Shapiro, The Quantum Illumination Story, IEEE Aerospace and Electronic Systems Magazine, 35, no. 4, pp. 8-20 (2020).
[145] S. Ray, J. Schneeloch, C. C. Tison, P. M. Alsing, The maximum advantage of quantum illumination, Phys. Rev. A 100, 012327 (2019).
[146] Bradshaw, M. et al. Overarching framework between Gaussian quantum discord and Gaussian quantum illumination. Phys. Rev. A 95, 022333 (2017).
[147] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Quantum illumination for enhanced detection of Rayleigh-fading targets, Phys. Rev. A 96, 020302(R) (2017).
[148] M. Sanz, U. Las Heras, J. J. Garc a-Ripoll, E. Solano, and R. Di Candia. Quantum estimation methods for quantum illumination. Phys. Rev. Lett., 118, 070803 (2017).
[149] E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, M. Genovese, Experimental realisation of quantum illumination, Phys. Rev. Lett. 110, 153603 (2013)
[150] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, Microwave Quantum Illumination, Phys. Rev. Lett. 114, 080503 (2015).
[151] S. Barzanjeh, S. Pirandola, D. Vitali, J. M. Fink, Microwave quantum illumination using a digital receiver, Science Advances Vol. 6, no. 19 (2020).
[152] U. Las Heras, R. Di Candia, K. G. Fedorov, F. Deppe, M. Sanz, and E. Solano, Quantum illumination reveals phase-shift inducing cloaking, Scienti c Reports, vol. 7, p. 9333 (2017).
[153] G. Sorelli, N. Treps, F. Grosshans, and F. Boust, Detecting a target with quantum entanglement, arXiv:2005.07116 [quant-ph] (2020).
[154] M. Reichert, R. Di Candia, M. Z. Win and M. Sanz, Quantum-Enhanced Doppler Radar/Lidar, arXiv:2203.16424 [quant-ph] (2022)
[155] Q. Zhuang and J. H. Shapiro, Ultimate accuracy limit of quantum pulse-compression ranging, Phys. Rev. Lett. 128, 010501 (2022).
[156] D. S. Simon, G. Jaeger, A. V. Sergienko, Ghost Imaging and Related Topics, In: Quantum Metrology, Imaging, and Communication, Quantum Science and Technology. Springer, Cham. (2017).
[157] E. C: Fear, X. Li, S. C. Hagness, and M. A. Stuchly, Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions, IEEE Trans. Biomed. Eng. 49 (8), 812 (2002).
[158] J. M. Fel cio, J. M. Bioucas-Dias, J. R. Costa, C. A. Fernandes. Antenna Design and Near-Field Characterization for Medical Microwave Imaging Applications. IEEE Trans. Antennas Propag. 67 (7), 4811 (2019).
[159] M. Casariego, Y. Omar, M. Sanz, Bi-frequency illumination: a quantum-enhanced protocol, https://arxiv.org/abs/2010.15097 (2020).
[160] T. Gregory, P.-A. Moreau, E. Toninelli, and M. J. Padgett, Imaging through noise with quantum illumination, Science Advances, Vol. 6, no. 6, eaay2652 (2020).
[161] A. Bienfait et al., Magnetic Resonance with Squeezed Microwaves Phys. Rev. X 7, 041011 (2017).
[162] P. Kurpiers, M. Pechal, B. Royer, et al., Quantum Communication with Time-Bin Encoded Microwave Photons, Phys. Rev. Applied 12, 044067 (2019).
[163] A. Sultanov, M. Kuzmanovic, A.V. Lebedev, and G. Sorin Paraoanu, Protocol for temperature sensing using a three-level transmon circuit, Appl. Phys. Lett. 119, 144002 (2021).
[164] S. Danilin, and M. Weides, Quantum sensing with superconducting circuits, Eprint arXiv:2103.11022 (2021).
[165] G. Manzano, J.M. Horowitz, and J.M.R. Parrondo, Quantum Fluctuation Theorems for Arbitrary Environments: Adiabatic and Nonadiabatic Entropy Production, Phys. Rev. X 8, 031037 (2018).
[166] T.B. Batalha~o, S. Gherardini, J.P. Santos, G.T. Landi, and M. Paternostro, Characterizing irreversibility in open quantum systems, Chapter in the book \Thermodynamics in the quantum regime { Recent Progress and Outlook", Eds. F. Binder, L.A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International Publishing (2019).
[167] V. Cimini, S. Gherardini, M. Barbieri, et al., Experimental characterization of the energetics of quantum logic gates, npj Quantum Information 6 (1), 1-8 (2020).
[168] B. Gardas, and S. De ner, Quantum uctuation theorem for error diagnostics in quantum annealers, Sci. Rep. 8, 17191 (2018).
[169] L. Bu oni, and M. Campisi, Thermodynamics of a quantum annealer, Quantum Sci. Technol 5 (3), 035013 (2020).
[170] Morton, John JL, Alexei M. Tyryshkin, Richard M. Brown, Shyam Shankar, Brendon W. Lovett, Arzhang Ardavan, Thomas Schenkel, Eugene E. Haller, Joel W. Ager, and S. A. Lyon, Solid-state quantum memory using the 31P nuclear spin, Nature 455, no. 7216 (2008): 1085-1088.
[171] Simon, Christoph, Mikael Afzelius, Jurgen Appel, A. Boyer de La Giroday, S. J. Dewhurst, Nicolas Gisin, C. Y. Hu et al, Quantum memories, The European Physical Journal D 58, no. 1 (2010): 1-22.
[172] Pham, Linh My, Nir Bar-Gill, Chinmay Belthangady, David Le Sage, Paola Cappellaro, Mikhail D. Lukin, Amir Yacoby, and Ronald L. Walsworth, Enhanced solid-state multispin metrology using dynamical decoupling, Physical Review B 86, no. 4 (2012): 045214.
[173] Baumgart, I., J-M. Cai, A. Retzker, Martin B. Plenio, and Ch Wunderlich, Ultrasensitive magnetometer using a single atom, Physical Review Letters 116, no. 24 (2016): 240801.
[174] M. Rossi, L. Mancino, G.T. Landi, M. Paternostro, A. Schliesser, and A. Belenchia, Experimental Assessment of Entropy Production in a Continuously Measured Mechanical Resonator, Phys. Rev. Lett. 125, 080601 (2020).
[175] V. Montenegro, M.G. Genoni, A. Bayat, and M.G.A. Paris, Mechanical oscillator thermometry in the nonlinear optomechanical regime, Phys. Rev. Research 2, 043338 (2020).
[176] X. Song, M. Naghiloo, and K. Murch, Quantum process inference for a single-qubit Maxwell demon, Phys. Rev. A 104, 022211 (2021).
[177] Tittel, Wolfgang, Mikael Afzelius, Thierry Chaneliere, Rufus L. Cone, Stefan Kroll, Sergey A. Moiseev, and Matthew Sellars. Photon-echo quantum memory in solid state systems, Laser & Photonics Reviews 4, no. 2 (2010): 244-267.
[178] Cruzeiro, E. Zambrini, Alexey Tiranov, Imam Usmani, Cyril Laplane, Jonathan Lavoie, Alban Ferrier, Philippe Goldner, Nicolas Gisin, and Mikael Afzelius. Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate, Physical Review B 95, no. 20 (2017): 205119.
[179] Shim, J. H., I. Niemeyer, J. Zhang, and D. Suter. Roomtemperature high-speed nuclear-spin quantum memory in diamond, Physical Review A 87, no. 1 (2013): 012301.
[180] Heshami, Khabat, Charles Santori, Behzad Khanaliloo, Chris Healey, Victor M. Acosta, Paul E. Barclay, and Christoph Simon, Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity, Physical Review A 89, no. 4 (2014): 040301.
[181] Sukachev, Denis D., Alp Sipahigil, Christian T. Nguyen, Mihir K. Bhaskar, Ru n E. Evans, Fedor Jelezko, and Mikhail D. Lukin, Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with singleshot state readout, Physical Review Letters 119, no. 22 (2017): 223602.
[182] Rabl, P., D. DeMille, John M. Doyle, Mikhail D. Lukin, R. J. Schoelkopf, and P. Zoller, Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits, Physical Review Letters 97, no. 3 (2006): 033003.
[183] R. Orbach, Spin-lattice relaxation in rare-earth salts, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 264, no. 1319, 458- 484 (1961).
[184] A. Wallra , D.I. Schuster, A. Blais, et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431, 162{167 (2004).
[185] K.W. Murch, S.J. Weber, C. Macklin, and I. Siddiqi, Observing single quantum trajectories of a superconducting quantum bit, Nature 502, 211{214 (2013).
[186] D. Tan, S.J. Weber, I. Siddiqi, K. M lmer, and K.W. Murch, Prediction and Retrodiction for a Continuously Monitored Superconducting Qubit, Phys. Rev. Lett. 114, 090403 (2015).
[187] T. Tyc, and B.C. Sanders, Operational formulation of homodyne detection, J. Phys. A: Math. Gen. 37, 7341 (2004).
[188] B. Qi, P. Lougovski, and B.P. Williams, Characterizing photon number statistics using conjugate optical homodyne detection, Opt. Express 28 (2), 2276{2290 (2020).
[189] Z. Wang, M. Xu, X. Han, W. Fu, S. Puri, S. M. Girvin, H. X. Tang, S. Shankar, and M. H. Devoret, Quantum Microwave Radiometry with a Superconducting Qubit, Phys. Rev. Lett. 126, 180501 (2021).
[190] A. Norambuena, E. Mun~oz, H.T. Dinani, A. Jarmola, P. Maletinsky, D. Budker, and J.R. Maze, Spin-lattice relaxation of individual solid-state spins, Phys. Rev. B 97, 094304 (2018).
[191] Rouven et al, Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade, https://arxiv.org/abs/2203.08297 (2022).
[192] B.M. Brubaker et al., First Results from a Microwave Cavity Axion Search at 24 eV, Phys. Rev. Lett. 118, 061302 (2017).
[193] Y. K. Semertzidis and S. Youn, Axion dark matter: How to see it? Science Advances 8, eabm9928 (2022)
[194] Francesca Chadha-Day and John Ellis and David J. E. Marsh, Axion dark matter: What is it and why now? Science Advances8, number = 8, eabj3618 (2022)
[195] S. Ghosh, E. P. Ruddy, M. J. Jewell, A. F. Leder and R. H. Maruyama, Phys. Rev. D 104, no.9, 092016 (2021).
[196] K.M. Backes, D.A. Palken, S.A. Kenany, et al., A quantum enhanced search for dark matter axions, Nature 590, 238 (2021).
[197] C. Bartram et al., Phys. Rev. Lett. 127 261803 (2021), Search for Invisible Axion Dark Matter in the 3:3 4:2 eV Mass Range
[198] K. Wurtz, B.M. Brubaker, Y. Jiang, E.P. Ruddy, D.A. Palken, and K.W. Lehnert Cavity Entanglement and State Swapping to Accelerate the Search for Axion Dark Matter, PRX Quantum 2, 040350 (2021).
[199] A.V. Dixit, S. Chakram, K. He, A. Agrawal, R.K. Naik, D.I. Schuster, and A. Chou, Searching for Dark Matter with a Superconducting Qubit, Phys. Rev. Lett. 126, 141302 (2021).
[200] Lee, GH., Efetov, D.K., Jung, W. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42{46 (2020).
[201] B. Karimi, F. Brange, P. Samuelsson, and J. P. Pekola, Reaching the ultimate energy resolution of a quantum detector, Nat. Commun. 11, 367 (2020).
[202] S. K. Lamoreaux, K. A. van Bibber, K. W. Lehnert, and G. Carosi, Analysis of single-photon and linear ampli er detectors for microwave cavity dark matter axion searches Phys. Rev. D 88, 035020 (2013).
[203] J. Liu et al., Broadband solenoidal haloscope for terahertz axion detection, https://arxiv.org/abs/2111.12103 (2021)
[204] J. C. Hamilton et al. [QUBIC], JCAP 04, no.04, 034 (2022).
[205] M. A. Fedderke, P. W. Grahamand, and S. Rajendran, Axion dark matter detection with CMB polarization, Phys. Rev. D 100, 015040 (2019).
[206] S. Pirro and P. Mauskopf, Advances in Bolometer Technology for Fundamental Physics Annu. Rev. Nucl. Part. Sci. 67, 161-181 (2017)
[207] J. S. Sidhu et al., Advances in Space Quantum Communications, IET Quant. Comm. 1 - 36 (2021).
[208] R. Lescanne et al., Irreversible Qubit-Photon Coupling for the Detection of Itinerant Microwave Photons, Phys. Rev. X 10, 021038 (2020).
[209] W. Dubosclard, S. Kim, and C.L. Garrido Alzar, Nondestructive microwave detection of a coherent quantum dynamics in cold atoms, Commun Phys 4, 35 (2021).
[210] S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, Quantum non-demolition detection of an itinerant microwave photon, Nature Physics, vol. 14, p. 546 (2018).
[211] J. Hammer, S. Thomas, P. Weber, and P. Hommelho , Microwave Chip-Based Beam Splitter for Low-Energy Guided Electrons, Phys. Rev. Lett. 114, 254801 (2015).
[212] C. Schneider, On-chip superconducting microwave beam splitter, Master Thesis Walther-Mei ner-Institut 12 (2014).
[213] A. T. Mobashsher, A. M. Abbosh, and Y. Wang, \Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with veri cation on realistic head phantom," IEEE Trans. Microw. Theory Techn. 62 (9), 1826 (2014).
[214] Everts, Jonathan R., Matthew C. Berrington, Rose L. Ahlefeldt, and Jevon J. Longdell, Microwave to optical photon conversion via fully concentrated rare-earth-ion crystals, Physical Review A 99, no. 6 (2019): 063830.
[215] Petrosyan, David, Klaus M lmer, Jozsef Fortagh, and Mark Sa man, Microwave to optical conversion with atoms on a superconducting chip, New Journal of Physics 21, no. 7 (2019): 073033.
[216] Ralph, Timothy C, Security of continuous-variable quantum cryptography, Physical Review A 62, no. 6 (2000): 062306.
[217] Hillery, Mark, Quantum cryptography with squeezed states, Physical Review A 61, no. 2 (2000): 022309.
[218] Reid, Margaret D, Quantum cryptography with a predetermined key, using continuous-variable EinsteinPodolsky-Rosen correlations, Physical Review A 62, no. 6 (2000): 062308.
[219] M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, and C. M Wilson, Proposal for a coherent quantum memory for propagating microwave photons, New J. Phys. 15, 065008 (2013).
[220] B. Julsgaard, C. Grezes, P. Bertet, and K. M lmer, Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble, Phys. Rev. Lett. 110, 250503 (2013).
[221] F. Grosshans, and P. Grangier, Continuous variable quantum cryptography using coherent states, Physical Review Letters 88, no. 5 (2002): 057902.
[222] R. Garcia-Patron Sanchez, Quantum information with optical continuous variables: from Bell tests to key distribution, PhD Thesis, (2007).
[223] A generalized n-level -system is described in the rotating frame by a Hamiltonian of the form H = Pkn=1 k jei hkj + k jki hej, where f kgk are the Rabi frequencies associated with the transition from the k-th level jki to the excited state jei. The name -system comes from the way the levels are arranged in the simplest case of n = 2.